Adjoint-Based Aerodynamic Optimization of Supersonic Biplane Airfoils

نویسندگان

  • Rui Hu
  • Antony Jameson
  • Qiqi Wang
چکیده

This paper addresses the aerodynamic performance of Busemann-type supersonic biplanes at both design and offdesign conditions. An adjoint-based optimization technique is used to optimize the aerodynamic shape of the biplane to reduce the wave drag at a series of Mach numbers ranging from 1.1 to 1.7, at both acceleration and deceleration conditions. The optimized biplane airfoils dramatically reduces the effects of the choked flow and flow-hysteresis phenomena, while maintaining a certain degree of favorable shockwave interaction effects at the design Mach number. Compared with a diamond-shaped single airfoil of the same total thickness, the wave drag of our optimized biplane is lower at almost all Mach numbers, and is significantly lower at the design Mach number.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Supersonic Biplane Design via Adjoint Method a Dissertation Submitted to the Department of Aeronautics and Astronautics and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In developing the next generation supersonic transport airplane, two major challenges must be resolved. The fuel efficiency must be significantly improved, and the sonic boom propagating to the ground must be dramatically reduced. Both of these objectives can be achieved by reducing the shockwaves formed in supersonic flight. The Busemann biplane is famous for using favorable shockwave interact...

متن کامل

Multidisciplinary Design Optimization of a Three-dimensional Supersonic Biplane Based on Method of Characteristics

This paper discusses a multidisciplinary design optimization of a three-dimensional supersonic biplane. First, methods to evaluate the performance of a supersonic biplane are described. The methods include modified oblique shock wave equations, a modified Method of Characteristics, and the reference enthalpy method. Second, validations of the present methods are described. Finally, a multidisci...

متن کامل

The Discrete Adjoint Approach to Aerodynamic Shape Optimization

A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimen...

متن کامل

Aerodynamic shape optimization of supersonic aircraft configurations via an adjoint formulation on distributed memory parallel computers

This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evalu...

متن کامل

Constrained multipoint aerodynamic shape optimization using an adjoint formulation and parallel computers

An aerodynamic shape optimization method that treats the design of complex aircraft configurations subject to high fidelity computational fluid dynamics (CFD), geometric constraints and multiple design points is described. The design process will be greatly accelerated through the use of both control theory and distributed memory computer architectures. Control theory is employed to derive the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010